THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050B Mathematical Analysis I (Fall 2016) Tutorial Questions for 27 Oct

1. Show by definition of limits of functions that

(a)
$$\lim_{x\to 3} \frac{2x+3}{4x-9} = 3$$

(b) $\lim_{x\to 1} \frac{x^3-1}{x^2-3x+2} = -3$

- 2. Let $f: A \subseteq \mathbb{R}, f: A \to \mathbb{R}$, and $c \in \mathbb{R}$ be a cluster point of A. Then we have
 - **Theorem 1.** (a) (Sequential Criterion, version I) $\lim_{x\to c} f(x) = l \in \mathbb{R}$ if and only if for each sequence $\{x_n\} \subseteq A \setminus \{c\}$ such that $\lim_{n\to\infty} x_n = c$, we have $\lim_{n\to\infty} f(x_n) = l$.
 - (b) (Sequential Criterion, version II) $\lim_{x\to c} f(x)$ exists in \mathbb{R} if and only if for each sequence $\{x_n\} \subseteq A \setminus \{c\}$ such that $\lim_{n\to\infty} x_n = c$, we have $\lim_{n\to\infty} f(x_n)$ exists in \mathbb{R} .
- 3. Let $f : A \subseteq \mathbb{R}, f : A \to \mathbb{R}$, and $c \in \mathbb{R}$ be a cluster point of A. Then we have

Theorem 2. (Divergence Criterioa)

- (a) f(x) does not have the limit $l \in \mathbb{R}$ at c if and only if there is a sequence $\{x_n\} \subseteq A \setminus \{c\}$ such that $\lim_{n \to \infty} x_n = c$, but $f(x_n)$ does not converge to l.
- (b) $\lim_{x\to c} f(x)$ does not exist in \mathbb{R} if and only if there is a sequence $\{x_n\} \subseteq A \setminus \{c\}$ such that $\lim_{n\to\infty} x_n = c$, but $\lim_{n\to\infty} f(x_n)$ does not exist in \mathbb{R} .
- (c) $\lim_{x\to c} f(x)$ does not exist if we can find two sequences $\{x_n\}, \{y_n\} \subseteq A \setminus \{c\}$ such that $\lim_{n\to\infty} x_n = c$, with $f(x_n) \to x$, $f(y_n) \to y$, but $x \neq y$.
- 4. Using the definition or any divergence criteria, show that the following limits do not exist.

(a)
$$\lim_{x \to 0} \sin(\frac{1}{x})$$

(b)
$$\lim_{x \to 1} \frac{2}{1-x}$$

(c)
$$\lim_{x \to 0} \frac{|x|}{x}$$