THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH2050B Mathematical Analysis I (Fall 2016)
 Tutorial Questions for 27 Oct

1. Show by definition of limits of functions that
(a) $\lim _{x \rightarrow 3} \frac{2 x+3}{4 x-9}=3$
(b) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-3 x+2}=-3$
2. Let $f: A \subseteq \mathbb{R}, f: A \rightarrow \mathbb{R}$, and $c \in \mathbb{R}$ be a cluster point of A. Then we have

Theorem 1. (a) (Sequential Criterion, version I) $\lim _{x \rightarrow c} f(x)=l \in \mathbb{R}$ if and only if for each sequence $\left\{x_{n}\right\} \subseteq A \backslash\{c\}$ such that $\lim _{n \rightarrow \infty} x_{n}=c$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=l$.
(b) (Sequential Criterion, version II) $\lim _{x \rightarrow c} f(x)$ exists in \mathbb{R} if and only if for each sequence $\left\{x_{n}\right\} \subseteq A \backslash\{c\}$ such that $\lim _{n \rightarrow \infty} x_{n}=c$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists in \mathbb{R}.
3. Let $f: A \subseteq \mathbb{R}, f: A \rightarrow \mathbb{R}$, and $c \in \mathbb{R}$ be a cluster point of A. Then we have

Theorem 2. (Divergence Criterioa)
(a) $f(x)$ does not have the limit $l \in \mathbb{R}$ at c if and only if there is a sequence $\left\{x_{n}\right\} \subseteq A \backslash\{c\}$ such that $\lim _{n \rightarrow \infty} x_{n}=c$, but $f\left(x_{n}\right)$ does not converge to l.
(b) $\lim _{x \rightarrow c} f(x)$ does not exist in \mathbb{R} if and only if there is a sequence $\left\{x_{n}\right\} \subseteq A \backslash\{c\}$ such that $\lim _{n \rightarrow \infty} x_{n}=c$, but $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ does not exist in \mathbb{R}.
(c) $\lim _{x \rightarrow c} f(x)$ does not exist if we can find two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\} \subseteq A \backslash\{c\}$ such that $\lim _{n \rightarrow \infty} x_{n}=c$, with $f\left(x_{n}\right) \rightarrow x, f\left(y_{n}\right) \rightarrow y$, but $x \neq y$.
4. Using the definition or any divergence criteria, show that the following limits do not exist.
(a) $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$
(b) $\lim _{x \rightarrow 1} \frac{2}{1-x}$
(c) $\lim _{x \rightarrow 0} \frac{|x|}{x}$

